Structures of the 12-Vertex Oxa- and Thia- $nido$ **-dodecaborates and** $B_{13}H_{13}^2$ **⁻: A Theoretical DFT/GIAO/NMR Investigation**

Xiaomei Yang, Haijun Jiao, and Paul von Ragué Schleyer*

Computer Chemistry Center, Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany

*Recei*V*ed April 29, 1997*

Although several oxametallaboranes had been observed previously,¹ Frange et al.² synthesized the first simple oxaborane $(OB₁₁H₁₂⁻)$ by oxidation of $B₁₁H₁₄⁻$ in aqueous sodium hydroxide. This anion is very stable and does not react with H₂O, EtOH, MeI, NaOMe, I₂, NaH, and HBF₄. Unfortunately, experimental efforts to obtain a crystal structure of $OB_{11}H_{12}^$ failed.² Simple skeletal electron counting rules³ suggest that the 12-vertex 28-electron OB₁₁H₁₂⁻ cluster should have a *nido*framework. The seven 11B NMR signals with 2:1:1:2:2:2:1 intensity ratios imply a C_s symmetrical structure. The presence of one three-coordinate oxygen and one bridged hydrogen in the boron framework (1) was inferred,² since similar 12-vertex *nido* structures have been found in azaborane4 and in oxametallaboranes.1b,c Semiempirical (AM1) calculations also have been used to justify the proposed structure.^{2c}

This note presents the results of theoretical investigations on the structure of oxa-*nido*-dodecaborate (**1**) (as well as another possible C_s isomer, 2) based on the DFT/GIAO/NMR method,⁵ which has been employed very successfully by our group and others for determining accurate structures of relatively large boranes and heteroboranes.⁶ To aid future experimental investigations, we also predict here the geometries and the 11B NMR

- (1) (a) Micciche, R. P.; Briguglio, J. H.; Sneddon, L. G. *Inorg. Chem.* **1984**, *23*, 3992. (b) Fontaine, X. L. R.; Fowkes, H.; Greenwood, N. N.; Kennedy, J. D.; Thornton-Pett, M. *J. Chem. Soc., Chem. Commun*. **1985**, 1722. (c) Ditzel, E. J.; Fontaine, X. L. R.; Fowkes, H.; Greenwood, N. N.; Kennedy, J. D.; MacKinnon, P.; Sisan, Z.; Thornton-Pett, M. *J. Chem. Soc., Chem. Commun*. **1990**, 1692.
- (2) (a) Ouassas, A.; Fenet, B.; Mongeot, H.; Gautheron, B.; Barday, E.; Frange, B. *J. Chem. Soc., Chem. Commun*. **1995**, 1663. (b) Frange, B.; Kennedy, J. D. *Main Group Met. Chem.* **1996**, *19*, 175. (c) Serrar, C.; Ouassas, A.; Boutalib, A.; Barday, E.; Gautheron, B.; Hanquet, B.; Frange, B. *Main Group Met. Chem.* **1997**, *20*, 247. We thank Prof. B. Frange for sending reprints of the last two papers.
- (3) Williams, R. E. *Chem. Re*V*.* **1992**, *92*, 177.
- (4) Meyer, F.; Müller, J.; Paetzold, P.; Boese, R. Angew. Chem., Int. Ed. *Engl.* **1992**, *31*, 1227.
- (5) (a) Bühl, M.; Schleyer, P. v. R. Ab Initio Geometries and Chemical Shift Calculations for Neutral Boranes and Borane Anions. In Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; Wiley: New York, 1991; p 113. (b) Bühl, M. Schleyer, P. v. R. *J. Am. Chem. Soc*. **1992**, *114*, 477. (c) Schleyer, P. v. R.; Gauss, J.; Bühl, M.; Greatrex, R. Fox, M. A. *J. Chem. Soc., Chem. Commun*. **1993**, 1776. (d) Onak, T.; Tseng, J.; Diaz, M.; Tran, D.; Arias, J.; Herrera, S; Brown, D. *Inorg. Chem*. **1993**, *32*, 487. The number of successful "experimental vs calculational" correlations that now have been made strongly suggests that structural assignments based on the ab initio/IGLO/NMR method are quickly approaching a confidence level that rivals modern-day X-ray determinations of molecular structures. (e) Diaz, M.; Jaballas, J.; Arias, J.; Lee, H.; Onak, T. *J. Am. Chem. Soc*. **1996**, *118*, 4405 and references cited.
- (6) (a) Gangus, B.; Stock, H.; Siebert, W.; Hofmann, M.; Schleyer, P. v. R. *Angew. Chem., Int. Ed. Engl*. **1994**, *33*, 2383. (b) Fox, M. A., Greatrex, R.; Hofmann, M.; Schleyer, P. v. R. *Angew. Chem., Int. Ed. Engl*. **1994**, *33*, 2298. (c) Hnyk, D.; Hofmann, M.; Schleyer, P. v. R.; Bu¨hl, M.; Rankin, D. W. H. *J. Phys. Chem*. **1996**, *110*, 3435. (d) Hofmann, M.; Fox, M. A.; Greatrex, R.; Schleyer, P. v. R.; Bausch, J. W.; Williams, R. E. *Inorg. Chem*. **1996**, *35*, 6170. (e) Hofmann, M.; Schleyer, P. v. R. *Acc. Chem. Res*. **1997**, manuscript in preparation.

Figure 1. C_s symmetrical hetero-*nido*-dodecaborates $XB_{11}H_{12}^-$, $X =$ O (1, 2) and S (3), constructed from the hypothetical $closo-B_{13}H_{13}^2$ by removal of 5*k* and 6*k* boron.

chemical shifts for the related thia-nido-dodecaborate $SB_{11}H_{12}^-$ (3), as well as $B_{13}H_{13}^{2-}$ (4).

All calculations were carried out with the Gaussian 94 program.7 Geometries were fully optimized (Figure 1) with density functional theory employing Becke's three-parameter exchange functional,⁸ the nonlocal correlation potential of Lee, Yang, and Parr,⁹ and the 6-31G* basis set (B3LYP/6-31G*). Frequency analyses (B3LYP/6-31G*) confirmed the optimized geometries to be minima.10 Selected bond distances are listed

- (8) (a) Becke, A. D. *Phys. Re*V*.* **1988**, *A38*, 3098. (b) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648.
- (9) Lee, C.; Yang, W.; Parr, R. G. *Phys. Re*V*.* **1988**, *B37*, 785.
- (10) (a) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A*. Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986. (b) Foresman, J. B.; Frisch, A. *Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian*, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.

⁽⁷⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian* 94; Gaussian, Inc.: Pittsburgh, PA, 1995

Table 1. Selected Interatomic Distances (\AA) for $B_{13}H_{13}^{2-}$ and $XB_{11}H_{12}^-$ with $X = O(1, 2)$ and S (3) at the RB3LYP/6-31G^{*} Level,^{*a*} with the Atom Numbering Shown in Figure 1

	$B_{13}H_{13}^{2-}$	1 ^b	$\mathbf{2}$	3
$X_1 - B_2$	1.620	1.495 (1.494)	2.436 (X_1-B_5)	1.897
$X_1 - B_4$	1.860	1.523 (1.524)	1.396 (X_1-B_2)	1.954
$B_2 - B_4$	1.996	1.929 (1.931)	1.966 $(B_2 - B_5)$	2.012
$B_2 - B_6$	1.786	1.768 (1.769)	1.746 $(B_5 - B_9)$	1.764
$B_2 - B_{12}$	2.975	2.944 (2.945)	$1.679(B_5 - B_{11})$	2.958
$B_4 - B_5$	2.721	2.585 (2.586)	2.221 $(B_2 - B_3)$	2.837
$B_4 - B_6$	1.928	1.848 (1.848)	$1.789(B_2-B_9)$	1.813
$B_4 - B_7$	1.928	2.106 (2.107)	$2.503(B_2 - B_6)$	2.247
$B_4 - B_{10}$	1.833	1.783 (1.782)	3.396 (B_2-B_{12})	1.797
$B_6 - B_9$	1.761	1.800 (1.798)	$2.705(B_8 - B_9)$	1.799
$B_6 - B_{10}$	1.754	1.785 (1.785)	$1.835(B_9 - B_{12})$	1.785
$B_6 - B_{12}$	1.750	1.762 (1.760)	1.821 $(B_9 - B_{11})$	1.760
$B_6 - B_7$	3.004	3.130 (3.130)	1.934 $(B_6 - B_9)$	3.134
$B_7 - B_8$	1.761	1.777 (1.775)	1.931 $(B_6 - B_7)$	1.775
$B_7 - B_{10}$	1.754	1.735 (1.734)	1.828 $(B_6 - B_{12})$	1.738
$B_7 - B_{13}$	1.750	1.743 (1.743)	1.734 $(B_6 - B_{10})$	1.735
$B_{10} - B_{12}$	1.806	1.802 (1.802)	1.784 $(B_{12}-B_{11})$	1.806
$B_{10} - B_{13}$	1.806	1.806 (1.805)	1.693 $(B_{12}-B_{10})$	1.817
$B_{10} - B_{11}$	2.856	2.783 (2.782)	1.797 $(B_{12}-B_{13})$	2.805
$B_{12} - B_{13}$	1.776	1.792 (1.791)	2.914 $(B_{11}-B_{10})$	1.774
$H_h - B_7$		1.314 (1.312)	1.309	1.304

^{*a*} The B3LYP/6-31G* total energies (in au) are -331.07633 $(B_{13}H_{13}^{2-})$, -356.066 48 (**1**), -356.006 17 (**2**), and -679.005 45 (**3**). b The B3LYP/6-311+G^{**} values are given in parentheses.</sup>

Table 2. B3LYP-GIAO/6-311G*//RB3LYP/6-31G* Computed 11B NMR Chemical Shifts^a (in ppm) for $B_{13}H_{13}^{2-}$ and $XB_{11}H_{12}^{2-}$ [X = O (**1**, **2**), S (**3**)] Compared with the Experimental Values with the Atom Numbering Shown in Figure 1

		$OB_{11}H_{12}^-$			
	atoms $B_{13}H_{13}^{2-}$	1 ^b	exptl ^c	2	$SB_{11}H_{12}^-$ (3)
B_1	27.2				
B ₂	-2.2	2.9(3.8)	4.35	$2.5(B_5)$	7.1
$B_{4.5}$	-19.6	$-6.7(-6.6)$	-7.0	55.6 $(B_{2,3})$	-4.0
$B_{7.8}$	-10.2	11.8(11.6)	12.8	-35.2 (B ₆₇)	22.2
$B_{6.9}$	-10.2	$-17.1(-17.1) -16.4$		-9.7 (B ₉₈)	-18.4
$B_{10,11}$	-22.2	$-14.7(-14.8) -14.2$		-0.9 (B _{12.13})	-16.8
B_{12}	-10.1	14.1(14.0)	11.3	$-31.3(B_{11})$	25.1
B_{13}	-10.1	$-30.1(-30.2) -29.1$		25.1 (B_{10})	-29.1

 a^a B₂H₆ is the primary reference, and δ (B₂H₆) = 16.6 ppm is used for conversion to the standard experimental BF₃·OEt₂ scale. ^{*b*} The B3LYP-GIAO/6-311G*//B3LYP/6-311+G** values are given in parentheses. *^c* Taken from ref 2a.

in Table 1. The B3LYP-GIAO/6-311G*//B3LYP/6-31G* computed 11B chemical shifts are summarized in Table 2.

After we apply Williams' corollary for generating stable fragments from *closo*-deltahedra,³ the most favorable isomer of OB11H12- can be predicted from the hypothetical *closo*tridecaborate $(B_{13}H_{13}^{2-}, 4)$,¹¹ in which one of the two 5*k* (fivecoordinate, without considering H-B connectivity) boron vertices connected to both 6*k* vertices is removed (or replaced by a bridged hydrogen) and the 4*k* coordinate and most negative boron is replaced by one oxygen atom (Figure 1). In contrast, when one 6*k* vertex is removed, the other 6*k* borons are not altered and a less stable geometry with unfavorably high connectivity should result (**2**, Figure 1). However, **1** has a highly distorted hypercoordinate oxygen, with two 79° BOB angles. In contrast, the BOB angle in **2** is 105°.

Nevertheless, Williams' reasoning is confirmed by our computations. At B3LYP/6-31G*, the C_{2v} symmetrical B₁₃H₁₃^{2–} $(4)^{11}$ is an energy minimum (no imaginary frequencies) and the four-coordinate B_1 is the most negatively charged boron with a

natural charge¹² of -0.258 ; the charges of the five-coordinate $B_{2,3}$ (-0.173) and six-coordinate $B_{4,5}$ (-0.037) are smaller. Both the 5*k*-removal structure **1** and the 6*k*-removal structure **2** have *C*^s symmetry (Figure 1), have bridged hydrogens, and are consistent with the observed 11 B NMR intensity ratio (2:1:1:2: 2:2:1). While frequency analyses showed both **1** and **2** to be energy minima, **1** is 35.5 kcal/mol [B3LYP/6-31G*+ZPE- (B3LYP/6-31G*)] lower in energy than **2**. As suggested by Frange et al.,² **1** has a three-coordinate oxygen with normal O_1 B_2 (1.495 Å) and $O_1-B_{4.5}$ (1.523 Å) bond lengths and one bridged hydrogen between B_7 and B_8 ($B_{7,8}-H_b = 1.314$ Å) (B3LYP/6-31G*). These structural parameters are nearly the same as those at the higher $B3LYP/6-311+G^{**}$ level. In contrast, the oxygen in **2** is only two-coordinate as revealed by the long O_1-B_5 distance (2.436 Å) and the normal $O_1-B_{2,3}$ bond lengths (1.396 Å) (Table 1).

To establish the correct structure of this oxaborane, we computed the 11B NMR chemical shifts for **1** and **2** and compared the results with the experimental values for $OB_{11}H_{12}^-$ (Table 2). The 11B chemical shifts of **1** and **2** are quite different (Table 2). Only the results for the more stable isomer **1** agree well with the experimental data (the differences between calculated and experimental chemical shifts are between 0.3 and 2.8 ppm). Thus, we conclude that Frange et al.'s $OB_{11}H_{12}^-$ is indeed **1**.

To aid further experimental investigations, we have also calculated the thia-*nido*-dodecaborate $SB_{11}H_{12}$ ⁻ (3), assuming a structure similar to the oxaborate **1**, as well as the hypothetical $B_{13}H_{13}^2$ ⁻ (4). Apart from the S-B distances, the B-B moiety of **3** hardly changes as compared with **1** (Table 1). The sulfur substitution also affects the $11B$ chemical shifts (Table 2). Compared with **1**, $\delta({}^{11}B_{7,8})$ and $\delta({}^{11}B_{12})$ in **3** resonate at a lower field by more than 11 ppm. The other changes are relatively small (Table 2).

The three-dimensional *closo*-borane dianions $B_nH_n^{2-}$ (6 $\leq n$ \leq 12) are known to have unusual chemical stability,¹³ but higher $B_nH_n^{2-}$ ($n \ge 13$) members are still unknown. While $B_{12}H_{12}^{2-}$ was calculated to have the largest stabilization energy as compared with other lower *closo* species,¹⁴ $B_{13}H_{13}^2$ ⁻ is only hypothetical.¹¹ The C_{2v} symmetrical $B_{13}H_{13}^2$ ⁻ results from the insertion of a neutral BH unit into one of the B-B bonds in the I_h B₁₂H₁₂²⁻ cluster.¹¹ But, why is B₁₃H₁₃²⁻ unknown?

As with other *closo*-borane dianions,¹⁴ we have used eq 1 to evaluate the relative stability of $B_{13}H_{13}^2$. The energy of the

$$
B_{12}H_{12}^{2-} + BH
$$
 (increment) = $B_{13}H_{13}^{2-}$ (1)

 $\Delta E = 13.9$ kcal/mol

neutral BH increment in eq 1 is based on the difference between planar B_3H_5 (allyl cation like, C_{2v}) and planar B_2H_4 (ethylenelike, D_{2h}).¹⁴ At the B3LYP/6-311+G^{**} level, eq 1 is endothermic by only 13.9 kcal/mol.¹⁵ Thus, the instability of

⁽¹¹⁾ Brown, L. D.; Lipscomb, W. N. *Inorg. Chem*. **1977**, *16*, 2989.

⁽¹²⁾ Reed, A. E.; Curtiss, L. A.; Weinhold, F. *Chem. Re*V*.* **1988**, *88*, 899. (13) Muetterties, E. L. Knoth, W. H. *Polyhedral Boranes*; Marcel Dekker:

New York, **1968**. (14) (a) Aihara, J. *J. Am. Chem. Soc*. **1978**, *100*, 3339. (b) Schleyer, P. v. R.; Subramanian, G.; Jiao, H.; Najafian, K.; Hofmann, M. In *Ad*V*ances in Boron Chemistry*; Siebert, W., Ed.; The Royal Society of Chemistry: London, 1997; p 3. (c) Schleyer, P. v. R.; Najafian, K. In *The Borane, Carborane, and Carbocation Continuum*; Wiley: New York, 1997.

⁽¹⁵⁾ The B3LYP/6-311+G^{**} energies (in au) are as follows: -52.034 72 (B_2H_4) , -77.446 76 (B₃H₅), -280.180 60 (B₁₁H₁₁²⁻), -305.762 91 $(B_{12}H_{12}^2{}^{-})$, -331.152 86 $(B_{13}H_{13}^2{}^{-})$.

 $B_{13}H_{13}^2$, relative to other members of the *closo*- $B_nH_n^2$ ⁻ family, is quite modest.¹⁴ For example, $B_{11}H_{11}^{2-}$ is destabilized by 106.9 kcal/mol¹⁵ relative to $B_{12}H_{12}^{2-}$, based on the same treatment (eq 2).

$$
B_{12}H_{12}^{2-} = BH
$$
 (increment) + $B_{11}H_{11}^{2-}$ (2)
 $\Delta E = 106.9$ kcal/mol

Despite the distorted heteroatom environment, the proposed structure of 12-vertex oxa- $nido$ -dodecaborate $(1, OB_{11}H_{12})$, the first oxaborate species where oxygen is part of the boronhydrogen cluster, is established by the agreement of computed (DFT/GIAO/NMR) 11B NMR chemical shifts on the optimized geometry with the experimental values. The unknown 12-vertex thia- $nido$ -dodecaborate (3, $SB_{11}H_{12}^-$), with a similar threecoordinate sulfur, and $B_{13}H_{13}^{2-}$ (4) appear to be good synthetic targets. The nonexistence of $B_{13}H_{13}^{2-}$ is not explicable on thermodynamic grounds.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie.

IC970498E